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1.0 SUMMARY

The aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel on a

Boeing 757 airplane has been developed. The modified wing is intended both to provide a facility

for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on

a full-scale commercial transport airplane. The 17-ft-long test panel provides a flow-controlled span

of nearly 14 ft, beginning just outboard of the left engine nacelle.

The aerodynamic design comprises---

a. A revised wing contour designed to produce a pressure distribution favorable to laminar

flow.

b_ Definition of suction flow requirements to laminarize the boundary layer and predict
the extent of laminar flow achievable in the test area.

Co

do

Design of provisions at the leading edge of the inboard end of the test panel to prevent

attachment-line boundary layer transition.

Geometric design and experimental verification of the effectiveness of a Krueger

leading edge flap that serves both as a high-lift device equivalent to the original 757

leading edge slat and as a shield to prevent insect impingement on the laminar flow
sUl'face.

The development of the revised wing contour was carried out using an enhanced version of

Jameson's transonic inviscid flow code (ref. 1) in conjunction with a Boeing-developed three-

dimensional boundary layer analysis code (ref. 2). No high-speed wind tunnel testing was done in

support of this effort. The selected design point was M = 0.80 and CL = 0.50 at 39,0(K_ft altitude,

which is the same as the recommended long-range cruise condition of the Boeing757 airplane. The

HLFC wing profile modification was limited to the portion ahead of the front spar. A slightly blunter

leading edge was used, providing more rapid initial acceleration than the original 757 wing. Aft of

the front spar, the desired gently favorable pressure gradient and aft pressure recovery were already

present. The lower surface of the leading edge formed the upper contour of the Krueger flap when

it was deployed. To increase the Krueger's effectiveness as a leading edge device, the very flat 757

contour was replaced by a slightly bulged form.

The suction flow rates were determined using the Unified Stability System (USS) computer code

developed by Boeing under NASA sponsorship (ref. 3). The USS code calculates disturbance

amplification ratios for crossflow (CF) and Tollmien-Schlichting (TS) instabilities, including the

effects of suction, in three-dimensional compressible flow according to Mack's stability code

(ref. 4). The transition criterion used in the present study was a curve on a plot of TS versus CF

amplification ratios based on data from flight experiments on the F-111 and Boeing 757 natural

laminar flow "gloves" (refs. 5 and 6). It showed high sensitivity to crossflow instability, resulting

in a requirement for high suction rates near the leading edge.

The stability and suction requirement calculations were carried out over a range of lift coefficient and

Math number surrounding the design point. The calculations indicated that laminar flow could

usually be sustained back to the pressure recovery point (or shock location), normally around 45%

to 50% of chord. However, the predicted laminar run was less than 45% chord over the inboard



portionof the HLFC test panel, because of early pressure recovery. At lower CLS, (around 0.40),

more suctionwas requiredand lesslaminarflowpredictedthanathighliftcoefficients(around0.60)

because of changes in the pressuredistributions.Th_ calculationsalsoindicatedthat,because of

decreasing Reynolds number, a greaterextentof laminar flow could be expected as altitude

increased, and less suction flow would be required to attain it.

The predictedtotalsuctionflow coefficient(CQ) atthedesign condition(M = 0.80 and CL = 0.50

at39,000 ftaltitude)was 4.72 x I0"5and thecorresponding totalvolume and mass flow rateswere

6.97 ft3/sand 0.1368 Ib/s(8.2Ib/min),respectively.

Afterthesuctionrequirementshad been definedand the suctionsystem had been designed tomeet

them, additionaldatabecame availablefrom fightexperiments on thevariable-sweepF-14 VSTFE

airplkne(ref.3),indicatingthatsomewhat highercrossflow amplificationwould be acceptable,so

lower suctionratesneartheleadingedge would beadequate.However, itwas notconsideredprudent

toredesignthe system fora lower suctioncapabilityatthatpoint,and itwas decided toregard the

USS code'spredictionasaconservativeupperboundary. The suctionsystemcontrolswould permit

inflightverificationof the lower suctionrequirements.

The attachment-line boundary layer momentum thickness Reynolds number was expected to be at

or near the critical value of 100 along most of the span affected by HLFC, so it was considered

advisable to take steps to reduce it. A suction"patch" was therefore provided at the leading edge just

inboard of the HLFC test area, vented to a low-pressure point further downstream on the lower

surface. The passive suction provided was estimated to have reduced the attachment-line Reynolds
number to about 30.

A low-speed wind tunnel test of a Boeing 757 model with modified leading edge devices showed that

the maximum lift capability was only slightly compromised by replacing two of the five slats with

dual-purpose Krueger flaps, and the test also showed that the HLFC leading edge modification would

not significantly alter the low-speed performance and handling qualities of the test airplane.



2.0 INTRODUCTION

2.1 BACKGROUND

The potential for reducing wing friction drag by increasing the extent of laminar flow was recognized

more than halfa century ago. However, boundary layer instabilities associated with high Reynolds

number and with sweepback prevented achievement of significant laminar runs on the wings of large

high-performance airplanes. In the 1960s, the USAF X-21 program (ref. 7) showed that those

problems could be overcome by using slot suction to stabilize the boundary layer, prodded that care

was taken to control wing surface roughness and waviness. The program failed as a demonstration

of practical laminar flow control because of a flawed joint design that required continual repair or

replacement of aerodynamic smoothing material. There was also debate as to whether the

complexity of a suction system that covered the entire wing with slots and subsurface ducts was

justified by the performance gain.

The concept of Hybrid Laminar Flow Control (HLFC), invented by L. B. Gratzer of The Boeing

Company (U.S. Patent No. 4,575,030), greatly simplifies laminar flow control by confining suction

surfaces and pneumatic system components to the leading edge. HLFC maintains laminar flow

downstream of the wing front spar solely by tailoring the pressure distribution.

Other concerns relating to anti-icing and to clogging or roughening of suction surfaces as a result of

insect accretion were addressed by the NASA Leading Edge Flight Test Program (refs. 8, 9, and 10).

A modified Lockheed Jetstar airplane equipped with a partial-span leading edge suction system was

flown in a variety of hostile environments and demonstrated reliable operation of the system.

The present program was sponsored by NASA, with partial USAF sponsorship and Boeing

participation, in order tc>---

a. Perform high Reynolds number flight research on HLFC.

b. Obtain data on the effectiveness of HLFC on a large, high-subsonic-speed transport

airplane.

c. Develop and demonstrate practical design concepts for HLFC systems.

2.2 TECHNICAL APPROACH

A Boeing-owned 757 airplane was modified to include all the critical systems for a full-scale HLFC

application, plus flight-operable suction controls and extensive instrumentation to meet HLFC

research requirements. The 757 was ideally suited for the program because its advanced aerodynamic

technology wing permitted attainment of the needed HLFC pressure distribution with only a small

contour change ahead of the front spar, and the smoothness of the existing between-spar structure
allowed the test to be conducted with minimal fairing or coating beyond normal paint. This ensured

that the data obtained would have practical application to standard production wings, and not be

restricted to ideally smooth surfaces.



2.3 PROGRAM TASKS

The program effort consisted of---

Aerodynamic Design. Definition of the surface pressures and suction quantities required to achieve

extended laminar flow, followed by geometric design of the wing contours needed to obtain the

surface pressures. This task is treated in detail in this volume.

Leading Edge Structural Design and Fabrication. The design, construction, and installation of

a 22-ft section of wing leading edge, having provisions for suction through a porous outer skin and

for a Krueger-type leading edge flap serving both as an integral part of the airplane high-lift system

and as a shield against insect accretion at low altitude. The leading edge was required to meet

stringent aerodynamic smoothness and waviness requirements under load, as well as to provide

structural integrity. This task is treated in detail in volume HI.

Suction System Design and Manufacture. The design of the system of air passages, ducts, valves,

and pump, and the specification of leading edge outer skin porosities. The system was required not

only to provide the suction flows required for laminarization, but also to demonstrate anti-icing

capability. To achieve this, hot pressurized air was required to flow out through certain portions of

the porous skin. The system was also required to provide for a wide range of suction flow adjustment,

so as to permit optimization of I-ILFC suction quantities and to permit generation of boundary layer

behavior data under a variety of suction conditions, in support of research on boundary layer analysis

methods. This task is reported in detail in volume IV.

Flight Test and Data Analysis. The definition and installation of suitable instrumentation to

evaluate boundary layer conditions and suction system performance, followed by the conduct of the

tests, data acquisition, and evaluation of test results. This task is reported in volume I, along with

an overview of the program.

2.4 BOEING 757 WING DESCRIPTION

The HLFC test panel replaced part of the left wing of a Boeing 757. The general arrangement and

principal dimensions of the airplane are shown in figure 2.4-1, and the wing structural arrangement

is shown in figure 2.4-2. The wing primary structure consisted of outboard spar boxes cantilevered

from a center section box contained within the fuselage. All three boxes were sealed to form integral

fuel tanks. Each box was built up of front and rear spars, lower panels, and upper panels. The

outboard wing boxes incorporated fibs normal to the outboard rear spar. The inboard wing had a

trailing edge extension to accommodate the landing gear support beam. The movable elements of

the wing included an aileron at the wingtip, six spoilers aft of the rear spar, two double-segment

trailing edge flaps, and five leading edge slats.

Various components of the wing were defined in different coordinate systems for design and

manufacturing convenience. For aerodynamic analysis, spanwise location was given by the wing

buttock line (WBL), and the fore-and-aft coordinate was given as a fraction of local wing chord

(sometimes supplemented by body station (BSTA) where an absolute reference was needed). For

I-ILFC structural and suction system design and analysis, outboard slat station (OSS) was used for

spanwise locations. Definitions of BS, OSS, and WBL are shown in figure 2.4-3.
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Leading edge features are shown in figure 2.4-4. The fixed part of the leading edge structure

consisted of machined aluminum alloy ribs with bonded fiberglass honeycomb stabilized surfaces.

The lower surface was made up of Kevlar laminate panels that were removable for access. Four

individual tapered-chord slats were outboard of the engine nacelle, and a single constant-chord slat

was inboard of the nacelle. Each slat was supported by two circular arc steel tracks and moved by

two rotary actuators driven by an electric motor via a torque tube. The slats had two deployment

positions: ungapped for takeoff and gapped for landing, as depicted in figure 2.4-5. (Note that
actuation of the Krueger flap on the I-ILFC test panel was required to be integrated with the actuation

of the slats on either side of it.)
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Figure 24-4. Boeing 757 Leading Edge Slat Design
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Takeoff Position (No Gap) Landing Position {Gapped)

Figure 2. 4-5. Leading Edge Slat Positions

2.5 DESIGN OBJECTIVES AND CONSTRAINTS

The 757 long-range cruise condition, M = 0. 80 at CL = 0.50, was the design point chosen for the HLFC

flight experimenL This was slightly faster than the point for highest M(L/D), as shown in figure 2,5-1.

The variation of altitude with gross weight at the design point condition is also shown. The applicable

weight range of the test airplane was from 160,000 to 220,000 lb.

Because the portion of the test panel forward of the front spar was to be completely rebuilt, it was

possible to refine the external contours to provide a pressure distribution more favorable to HLFC

than the pressure distribution of the original 757s. Previous studies (refs. 11 and 12) had indicated

a number of desirable features for HLFC airfoil sections on a sweptback wing. As shown in figure

2.5-2, these features included--

a. Rapid initial acceleration to limit the extent of the region where suppressing crossflow

instability required intensive suction.

b. A slight negative pressure peak at the end of the initial acceleration to attenuate the

crossflow boundary layer.

c. Gentle acceleration aft of the suction region just sufficient to keep the Tollmien-

Schlichting (TS) instability in check.

d. Late recovery (i.e., shock location), possibly aft of 65 % chord, with local Mach num her

not exceeding I. 15.

While a stronger pressure gradient aft of the suction region would be favorable for the TS

amplification, the associated crossflow boundary layer would be vulnerable to CF instability.

Furthermore, because of the limitation on Mach number at the shock, the favorable pressure gradient

would reduce the achievable lift coefficient.

The modifications to the wing contours in the HLFC test section were aimed at fulfilling the above

objectives as far as the constraints imposed on the design permitted.
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One such constraint was that no contour changes were allowed aft of the front spar, preventing

postponement of the pressure recovery point. Another was that no change in slope was permitted at

the mating point of the leading edge and the spar box. This, in conjunction with other design

guidelines regarding the curvature distribution of practical transonic airfoils, limited the allowable

steepening of the initial pressure gradient.

Because of the requirement to protect the leading edge from insect accretion during landing and

takeoff and the need to eliminate gaps on the upper surface, leading edge slats Nos. 3 and 4 were

replaced by Krueger flaps. These flaps were required to provide low-speed flight characteristics

comparable to those of the original 757.

The initial design called for suction to be applied along the entire 22-ft length of the new leading edge,

but the suction region was later reduced by 5 ft to adapt the design to the capacity of the available

suction pump.
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2.6 SURFACE QUALITY REQUIREMENTS

Guidelines for two-dimensional (2D) surface quality requirements on laminar flow airplanes were

fwst established during the Northrop/USAF X-21 LFC research program (ref. 7), using the extensive

database of previous boundary layer research and the results of specific LFC-related experiments.

More recent flight and wind tunnel tests by NASA, Boeing, and others (refs. 13, 14, and 15) have

added to this database, resulting in further refinements but not substantially changing the Northrop
criteria.

There axe two categories of surface imperfections to be dealt with: 2D imperfections, such as

waviness, steps, gaps, joints, rivets, and dents (depending _ the value of d/k), and three-dimensional

(3D) types, such as insect residue, paint graininess, and accumulated dirt, all of which behave in the

same manner whether they are individual protuberances or sparsely distributed when the values of

d/k are in the general vicinity of 0.5 to 10. At Mach numbers up to moderate supersonic speeds, 2D

imperfections introduce TS-type disturbances into the boundary layer, and their effects on transition

are affected by boundary layer stability, whereas 3D surface imperfections bypass stability effects

and cause premature transition very near the individual imperfection when it is a critical size.

Surface tolerances are generally more stringent in the forward region, where the boundary layer is

relatively thin, but other factors may mitigate this rule. For example, suction or a strong favorable

pressure gradient may allow wider tolerances for waviness but they may also promote transition due

to a 3D discontinuity. Increasing unit Reynolds numbers (decreasing altitude) leads to tighter

tolerances for both 2D and 3D protuberances, but in a different manner. For 2D, increasing unit

Reynolds number increases the growth of the 2D type of boundary layer disturbances, leading to a

forward movement in transition. For 3D, increasing unit Reynolds number decreases the height of

3D roughness that triggers immediate transition near the roughness. Also, crossflow in the leading

edge may reduce the size of the tolerable 3D protuberances. The limits specified for the 757 HLFC

test section at the design condition are summarized in figures 2.6-1 and 2.6-2 for the most common

types of surface imperfections. Surface quality requirements are also discussed in volume 11"Iof this

report.

Finally, figure 2.6-3 illustrates so called "aerodynamic" roughness, which arises from the fact that

the strearntubes sucked in to perforations create an uneven "virtual surface" that is analogous to a

physical surface with distributed roughness. While there are no data available to prove that this effect

actually exists, it was regarded as prudent to allow for the possibility. An unpublished analysis

attributed to Pfenninger (who also provided the figure) indicates that the originally contemplated

hole spacing of 0.025 in wouldproduce an equivalent roughness height K = 0.003 in, but a maximum

value of k of only 0.001 in was allowable close to the airfoil nose. The analysis also showed that

reducing the spacing to 0.010 in would reduce k to the required value. The 0.010-in spacing was

accordingly adopted for the most forward perforation area.
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3.0 HLFC WING SECTION EXTERNAL CONTOUR ANALYSIS AND DESIGN

Before the present contract, preliminary studies had been carried out regarding the feasibility of the

HLFC experiments on the Boeing 757 airplane. This work included computation of pressure

distributions, boundary layer stability characteristics, and preliminary estimates of suction

requirements, as well as the extent of laminar flow achievable on the basic 757 wing. The conclusion

of these studies was that the 757 was well suited for the proposed flight experiment.

Preliminary work on the design of the HI.,FC wing modification had also been started. It focused

mainly on delineating trades between airfoil contour changes, suction requirements, and the

achievable extent of laminar flow. By the time the contract was awarded, the applicable trades and

limitations were fairly well understood, and a sound basis for the final design was established. These

studies confirmed Pfenninger's recommendations (ref. 16) that it would be advantageous to start the

suction as close to the attachment line as possible and to make the forward suction peak high and

narrow, rather than low and wide. The required suction could be reduced by shortening the zone of

acceleration (i.e., by steepening the initial pressure gradient) and allowing a slight pressure peak to

form following the initial acceleration. This could be achieved by using a blunter leading edge.

3.1 ANALYTICAL METHODS

The principal analytical design tool for the wing contour modifications was a three-dimensional (3D)

transonic viscous flow computer code system capable of computing flows around wing/body/nacelle

configurations. Major components of this system are an enhanced version of Jameson's FLO28

transonic inviscid flow code (ref. 1) and a 3D boundary layer analysis by McLean (ref. 2). Other

components include a grid-generation program that treats the wing, fuselage, nacelles, and struts

simultaneously, so that all mutual interference effects are included. Figure 3.1-1 shows the grid on

the airplane surface.

The flowfield is discretized by the the grid-generation program, and a finite-volume method is used

to solve the full potential equation for the external flow. Artificial viscosities axe applied to all three

directions in the supersonic region to capture shocks. The surface velocities, together with Reynolds

number and temperature, are used to calculate the boundary layer on the wing. Boundary layer

transition on the wing is assumed at the f'wst appearance either of an adverse pressure gradient or of

laminar separation, and is assumed fixed at 2% chord on the lower surface.

The wing geometry is then updated by the displacement thickness of the boundary layer, and the

inviscid flow is computed again. The new surface velocities are then used to compute the wing

boundary layer, and the process is repeated until the the solutions stabilize, usually within six to eight

cycles.

The gridding of the 757 wing for the 3D boundary layer analysis is shown in figure 3.1-2. Near the

expected shock location and the leading and trailing edges, the chordwise paneling was made more

dense. In the vicinity of the engine nacelle and the side of the body, denser spanwise spacing was also

provided.

Figure 3.1-3 shows a comparison of pressure distributions computed by this system of codes with

wind tunnel test data for the original 757 wing. The agreement is generally fairly good, although

some tendency for underpredicting the peak pressures can be observed. (The pressures encountered

in flight can be expected to differ even more, because the analysis paneling is more faithful to the wind
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tunnel model than it can be to the real airplane wing, which not only is more complex in detail, but

is subject to varying aeroelastic deformation at different weight conditions. Furthermore, computational

fluid dynamics code calibration has mostly been done using plentiful wind tunnel pressure data at

relatively low Reynolds number, rather than with flight test surveys at full scale.)
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3.2 ORIGINAL 757 WING SURFACE PRESSURES

Computed pressure distributions for the original 757 wing geometry at three spanwise stations within

the prospective HLFC test region are shown in figure 3.2-1. The CP distributions at the center and

outboard sections closely resemble the one desired for HLFC (fig. 2.5-2) in that they show a rapid

acceleration at the leading edge, followed by a gende favorable pressure gradient until the recovery

point is reached at about 40% to 50% chord. However, in the vicinity of the nacelle, the pressure

distribution is less favorable, having an early recovery point pre, cede.xt by a moderately strong

acceleration due to local unsweeping of the isobars. This behavior is attributed to intcTference due

to the engine nacelle, and it caused some difficulty in the design of the I-H.,FC leading edge.

WBL 29O

-0.8"

-0.4.

Unsweeping of isobars
due to engine nacelle

WBL 387

Cp -0.4-
WBL 479

o4 05
x/c

Figure 3.2-1. Theoretical Pressure Distribution on the Basic 757 Wing at Design Condition
M = 0.80, CL = 0.50
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3.3 DESIGN OF THE MODIFIED WING CONTOUR

Figure 3.3-1 illustrates the approach to contour modifications: A more rapid initial acceleration for

crossflow attenuation could be obtained by a slight blunting of the leading edge. At the same time,

the lower surface of the leading edge could also be revised to improve the characteristics of the

Krueger flap, which replaced the slat used on the basic 757 airplane. The lower surface contour ahead

of the front spar forms the upper side of the extended Krueger flap. It is very flat where a curved
contour would be more desirable. This could readily be achieved by adding a shallow bulge to the

lower surface and by adding a folding blunt leading edge (called a "bullnose"). The extent of actual

leading edge contour modifications relative to the basic 757 wing contours is shown in figure 3.3-2

for four sections of the I-ILFC test panel. (Appendix A provides additional cross sections on gridded

plots. Data relating to leading edge radii, which affect attachment-line flow characteristics

(discussed in sec. 5), are given in appendices B and C.)

At the beginning of the program, it was planned that the suction area would start just outboard of the

nacelle, at WBL 270 (36% semispan), and extend through the area occupied by slats Nos. 3 and 4,

ending at WBL 495 (66% semispan). Later, the inboard boundary of the suction zone was moved

outboard to WBL 330 (42% semispan) to eliminate the need for a second turbocompressor. Because

this was done after completion of the aerodynamic analysis, airfoil contours and computation results

are shown for inboard sections that were subsequently excluded from the HLFC test span.

Cp

Upper Surface

-- Bump to provide steeper
initial pressure gradient

and more room for Krueger

Lower Surface

• . Modified

Bulge to provide
more curvature

Figure 3.3-1. Philosophy of Wing Contour Modifications
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The unswccping of the isobars in the vicinity of the nacelle had significant impact on the design of

the I-ILFC suction surface. It was not desirable to have large pressure variations along the "flutes"

(spanwise channels under the perforated skin that collect the suction flow), so the flutes were laid out

along isobars. Curved isobars require curved flutes, adding to fabrication complexity. It was

therefore desirable to design an I-ILFC wing leading edge with parallel isobars. However, the

distortion of the pressure pattern resuhing from to the high-bypass-ratio turbofan engine's large

nacelle limited compliance with this objective.

After the modified contours were tentatively dcf'mcd, an attempt was made to eliminate the

unswccping of the isobars near the nacelle by further increasing the bluntness of the leading edge to
increase the initial acceleration. This exercise, however, did not significantly improve the isobar
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pattern, even with a very large bump on the leading edge near the nacelle. Figure 3.3-3 shows the

airfoil shapes and pressure distributions for the basic 757 wing, the baseline HLFC modification, and

the blunt leading edge almrnative. The nacelle effects evidently overpowered the airfoil shape

effects, because the pressure distributions did not change much, even though the airfoil was

considerably more blunt. Furthermore, past experience has shown that under off-design conditions,

that is, at lower Mach numbers, the blunt airfoils tend to develop a strong pressure peak near the

leading edge that could have some adverse effects, such as premature shock and increased drag.

Therefore, the blunter leading edge design was not accepted for the final HLFC configuration.
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Legend:
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Figure 3.3-3. Effect of Leading Edge Blunting Near the Nacelle
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The design process was complct¢d by smoothing the wing contour lines in both spanwis¢ and

chordwise di_ctions. This was necessary because airfoil sections were defined at given stations,

while coordinates of intermediate sections were derived by interpolation. This resulted in a slighdy

bumpy initial shape that did not have continuous curvature in the chordwise direction (which is

desirable aerodynamically), and that was not wavc-fre_ in the spanwis¢ direction (which is desirable

for fabrication as well as for aerodynamic reasons). Figures 3.3-4 and 3.3-5 show the msuhs of the

smoothing process.
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Figure 3.3-4. Wing Geometry Smoothing--Spanwise

22



I,._lgelld:

Smoothed

.... Unsmoothe¢l

Cu_a_re=

d2y

dx 2

/*'_t

i r;i
20 25 30 35 40

1. _. ---
I I

_o.

o_ --, , --7"-'---_ , //
20 25 30 35 40 //

1.

0. .

0 I'- ".-'-'- I I -- _ I

20 25 30 35 40 Front_ -

Arc length from front spar, So, in spar

Figure 3.3-5. Wing Geometry Smoothing--Chordwise

23



3.4 CALCULATED PRESSURE DISTRIBUTIONS ON THE MODIFIED WING

3.4.1 Design Conditions

Theoretical pressure distributions for the modified HLFC test panel at M = 0.80 and CL = 0.50 are

shownin figure 3.4-1. (Gridded plots, for all stationsanalyzed, are presented in app. D.) Comparison

with figure 3.2-1 shows that the contour changes succeeded in steepening the initial pressure gradient

at midpanel and outboard, but the pressure recovery point was not affected much because the

modification was entirely ahead of the front spar. The unsweeping of isobars near the nacelle causes

large spanwise pressure variations along constant chord lines near the leading edge, as illustrated in

figure 3.4-2. If the internal flutes had been located along these lines, the external pressure variation

could have resulted in excessive suction inboard and inadequate suction, or even outflow, outboard.

(Outflow could have been expected to cause immediate boundary layer transition, and so was not

permissible.) It was therefore necessary to choose between placing separator dams in the flutes or

laying out the flutes along isobars. While dams in the flutes appeared to be a simple solution, they

could have caused abrupt spanwise steps in suction level, which would have had unpredictable

effects on transition. Therefore, it was decided to take the conservative approach of building curved

flutes that ran along isobars. The theoretical isobar pattern within the front 0.5 in of the suction

surface is shown at left in figure 3.4-3. The flute layout in this region followed the same pattern.

(Larger scale isobar plots are provided in app. E.)

WBL 290

_WBL 290. ,_ 02 05 0_0

L 387

0

x/c
0.4

WBL 387

-0.8
-0.4

q,
0

0.4

-0.8

-0.4

q,
0 I

0.5 0.6_.8 _ .0
_c

0.4

Figure 3.4-1. Theoretical Pressure Distributions for the Modified 757 HLFC Wing; M = 0.80, CL = 0.50,
and R/ft= 1.61 mi//ion (h = 39,000 ft)
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Farther aft, the isobars curved back sharply, as illustrated at the upper right of figure 3.4-3. There,

it was not feasible to lay out the flutes along the isobars. At the design condition, the desired

distribution of suction quantity could have been obtained by varying the skin porosity over flutes laid

out along approximately straight lines. There is a penalty, however, for departing from the isobars.

Because outflow can be expected to cause immediate transition, the entire flute must always be

sucked hard enough to prevent outflow over its entire length. At off-design conditions, a mismatch

in external and internal pressures will inevitably be present, requiring local oversuction and a

consequent increase in compressor load.

3.4.2 Off-Design Conditions

After the airfoil contours were finalized, the flow analysis was extended to a number of off-design

flight conditions where operation of the HLFC system was planned. These conditions included

variations in Mach number and lift coefficient at cruise, as well as climb, descent, and holding at

various speeds and altitudes. Figure 3.4-4 illustrates the range of off-design conditions analyzed.

An overview of the effects of Mach number and lift coefficient on the chordwise pressure

distributions at the test panel midspan (WBL 387) is presented in figure 3.4-5. It is evident that at

low Mach numbers (M < 0.78) an acute pressure peak develops near the leading edge and the

subsequent adverse pressure gradient will not allow much laminar flow. On the other hand, at Math

numbers and lift coefficients higher than the design values (M > 0.80 and CL > 0.50), the pressure

recovery point shifts rearward and the extended region of mildly favorable pressure gradient may

allow more laminar flow. In fact, the most extensive laminar flow could be expected not at the design

point of M = 0.80 and CL = 0.50, but at somewhat higher Math numbers and lift coefficients.
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Figure 3.4-5. Theoretical Wing Pressure Distributions

More detailed comparisons for the effects of Mach number and lift coefficient within the primary and

secondary test envelopes are presented in figures 3.4-6 and 3.4-7. These comparisons give further

support to the observation that the most favorable conditions for extended laminar flow would be

found at somewhat higher Mach numbers and lift coefficients than the design condition.

Figure 3.4-8 shows pressure distributions for climb and descent conditions at M = 0.60 and M = 0.70,

respectively. Normal climb above 10,000 ft takes place at a calibrated airspeed of 290 kn,

corresponding to a lift coefficient of approximately CL = 0.40, with gradually increasing Math

number as the airplane gains altitude. Optimum calibrated airspeed for descent is 250 kn

(approximately CL = 0.50) with gradually decreasing Mach number from M = 0.80 to M = 0.38 as

the airplane loses altitude. In both climb and descent, a pronounced pressure peak is present near the

leading edge, which is expected to preclude the achievement of extensive laminar flow.
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4.0 BOUNDARY LAYER STABILITY ANALYSIS AND DETERMINATION

OF SUCTION REQUIREMENTS

Once a geometry forthetestpanelhad been determinedon thebasisoftheHLFC guidelinesand the

corresponding pressuredistributionswere known, the nextaerodynamic design taskwas todefine

an economical suctiondistributionthatwould providethemaximum practicalextentoflaminarflow.

4.1 STABILITY PREDICTION METHODOLOGY

The principalanalyticaltoolforthiswork was theUnifiedStabilitySystem (USS) computer code,

developed by Boeing under NASA contract(ref.3). This code uses Mack's method (ref.4) to

generatethe disturbanceamplificationcharacteristicsof the two major boundary layerinstability

modes in three-dimensionalcompressible flow,for given distributionsof externalpressureand

suction flow.

The code is a combination of several subprograms: First, boundary layer velocity profiles (both

tangential and crossflow (CF'), including the effects of suction) are calculated using the method of

reference 2. This is followed by analyses of both Tollmien-Schlichting (TS) and CF instabilities to

determine amplification rates. The mathematical basis and solution procedure in both are very

similar, but the TS procedure treats waves that propagate more or less in the direction of the local

external flow, while the CF procedure analyzes waves that propagate across it.* The amplification

rates are integrated separately to obtain amplification ratios. The natural logarithms of the

amplification ratios (referred to as "N-factors") are more convenient to plot and discuss than the

ratios themselves. Figure 4.1-1 shows the computation sequence and indicates the appearance of the
data. -

The method of transition prediction is illustrated in figure 4.1-2. The TS amplification exponent,

NTS, is plotted against the CF amplification exponent, NCF, with the distance al9ng the surface, s/

c, as a parameter. Transition is predicted when this curve crosses the transition criterion line, an

empirically derived boundary. When CF effects are dominant, the trajectory of N-factors leans to

the right, but when the amplification is mainly due to TS instability, it runs more or less parallel to

the NTS axis. Where NCF remains very small, the analysis may carry into the pressure recovery

region, and computation of NTs may be subject to considerable uncertainty. In those cases, judgment

must be applied to estimate a transition Point. (The stability calculations for WBL 447, discussed

below in sec. 4.2, are an example.)

Figure 4.1-3 shows the transition criterion used in the present design study. It was based on

correlation of N-factor computations by the USS code with experimental transition data for the

NASA F-111 NLF glove (ref. 5) and the Boeing 757 NLF glove (ref. 6).'t" A point from Boeing

experiments on aT-33 with an NLF glove (ref. 15) is also shown. Boundaries of the data scatter band

are shown by the dotted lines.

* The wave angle, defined as the angle between a normal to the wave front and the flow direction, will be near 0 deg
for"IS waves in incompressible flow, or 0 to 70 deg in compressible flow. Wave angles for CF disturbances are from
70 to 90 deg.

"tCorrelation of N-factor computations by the USS code with experimental transition data shows considerable scatter.
Use of such a criterion is an empirical expedient in the absence of a more rigorous method. One of the objectives of
the present program is to provide additional experimental data to support development of improved transition
prediction methods.
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4.2 SUCTION REQUIREMENTS AT INDIVIDUAL SPAN STATIONS

Moderately swept transport airplane wings usually have sufficient CF to cause early transition.

Controlling CF instability is therefore of paramount importance. CF instability can, to some extent,

be mitigated by geometric means (that is, airfoil tailoring) but boundary-layer suction is the most

direct means of preventing crossflow-induced transition. The influence of suction on the N-factor

trajectory is illustrated in figure 4.2-1. Without suction, the uncontrolled CF instability pushes the

amplification trajectory to the right, where it intersects the transition criterion line at a low value of

s/c. For the case shown, transition would be expected to take place at about 14% chord. With

adequate suction, the trajectory moves closer to the NTS axis (i.e., showing low CF amplification),

and NTS is somewhat reduced as well. The intersection with the transition boundary now takes place

at about 50% chord. Generally, the practice was to apply sufficient suction to bring the trajectory

close to the NTS axis, and if possible, to keep it clear of the transition data scatter band.

In the discussions below, three different nondimensional suction quantity parameters are used. They

al'¢--

CQ = total suction coefficient = (total suction mass fiow)/p**V**Ssp,

12
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8
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Figure 4.2-1. Effect of Suction on Amplification Characteristics
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where Ssu is the area of the HLFC suction panel. (The "HLFC suction panel" includes all the win_

chord, to the trailing edge, over the span where suction is applied. In the present case, Ssp = 190.78 ft z

Cq = chord suction coefficient = (suction mass flow per unit span)/p**V**c,

where c is the local streamwise wing chord, and

Cq' = local suction coefficient = (suction mass flow per unit area)/p**V**

The actual process of determining suction requirements for the FILFC test panel began with stability

analyses at several spanwise stations, using an assumed initial cq' distribution. The calculations then

were repeated with revised Cq' values until Cq was minimized, while maintaining the maximum extent
of laminar flow. The typical tailoring sequence is illustrated in figure 4.2-2.

First, the suction peak (A) in the high-crossflow region was made narrower (B), resulting in lower

Cq, but at the expense of slightly NCF. Then the peak itself was lowered (C) until the predicted
transition moved forward. Finally, adding a little more suction in the region between the high-
crossflow and low-crossflow sectors (D) reduced NCF to the level lost in the first suction peak

reduction, while still giving a net reduction in cq, relative to the starting point.

Stability calculations were also carried out for a number of off-design conditions. Their extent is

illustrated in figure 4.2-3. Altogether, nearly 100 cases were analyzed, including 10 flight conditions

each at three spanwise stations (WBL 290, 387, and 479) with suction variations, plus six additional

spanwise stations (WBL 270, 311, 360, 416, 477, and 513) at the design condition. Altitude
variations were also included in the calculations, to investigate Reynolds number effects. A

summary of boundary layer growth at the stations is given in appendix F. Detailed results of

boundary layer analysis are included as appendix G.

Because of the differences in pressure distribution between inboard and outboard stations, two

distinct behaviors were found in the effects of cq' tailoring on transition. WBL 311 and WBL 447
will be discussed. At WBL 311 the initial flow acceleration is more gradual than at WBL 447 because

of the nacelle interference effect described in section 3.3, resulting in a longer CF region, whereas

at WBL 447 the acceleration takes place within the fwst 5% of chord. Figure 4.2-4 compares the

pressure and suction distributions at these two stations. The computed amplification factors are
shown in figure 4.2-5. The graphs show the CF amplification factors for a range of wave numbers

at zero frequency and the TS amplification factors for a range of frequencies at a wave angle of
50 deg, which are the most critical conditions. The dominance of CF amplification at W'BL 311 is

very evident, whereas TS amplification is approximately the same at both stations. The range of CF

wave numbers and TS frequencies is illustrated in the contour plots of figure 4.2-6. Finally, the

impact of pressure distribution on the boundary layer instability and predicted transition is illustrated

in figure 4.2-7, where the pressure distributions, the NTS and NCF envelopes, and the transition
criterion (NTs-NCF) diagrams for the two cases are shown together. (Note that in constructing the

NTs-NCF diagram, the envelopes of the individual amplification factor curves were used. For the
remainder of this discussion, only the envelope curves will be shown.) At WBL 311, transition is

predicted at about 36% chord, while at WBL 447 it is near 50%, but in both cases the limits are
imposed by the onset of pressure recovery. At WBL 311 more suction could further reduce the CF

instability, but not much laminar flow could be gained because of the early recovery point. At WBL
447 the CF instability is almost entirely eliminated, but again the pressure recovery at 50% chord
limits the extent of laminar flow.
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At each condition at or above M = 0.79, three spanwise stations (WBL 290, 387, and 479) were

analyzed, except for the design condition at 39K-ft altitude, in which case five additional stations

were also analyzed (WBL 311,360, 416, 447, and 513).

Figure 4.2-3. Scope of Boundary Layer Stability Calculations
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The effects of suction distribution tailoring are illustrated in figures 4.2-8 through 4.2-10. Narrowing

the high suction region (i.e., going from type A suction to type B as indicated in fig. 4.2-2) allows

some reduction in cq at the expense of slightly increased CF amplification (fig. 4.2-8). A small

increase in Cq' at the "comer" (a type D distribution) can restore the condition of near-zero NCF at

transition (fig. 4.2-9). While this remedy was effective over the outer portion of the HLFC panel,
it did not work at the inboard end, where the slow acceleration caused the CF instability to be very

strong. Figure 4.2-10 shows the stability analysis results for WBL 270 (just outboard of the nacelle)

with a type C suction distribution at Cq = 2.74 x 10"_ and also with an unorthodox distribution (E) that

puts a large amount of extra suction in the corner at Cq = 5.79 x 10 "5. With the conventional suction

distribution, crossflow-induced instability is the dominant factor, and transition is predicted at about

26% chord. The extra suction does bring the amplification trajectory closer to the NTS axis but not

enough to affect transition very much. Thus a 211% increase in suction produced only a 5% chord
increase in the extant of laminar flow. The effect of a further increase of suction (1:) could not be

evaluated because the stability code would not converge on a solution. In any case, because pressure

recovery at this station begins not far past 30% chord, the potential for additional improvement is

small. 0,Vhen the test panel span was later reduced to adapt to the capacity of a single turbocompressor,

WBL 270 was outside the laminarized region anyway.)

The typical effects of altitude (more pre, ciscly, of unit Reynolds number) are shown in figure 4.2-11.

The data pertain to WBL 479 at CL = 0.50, M = 0.80, and h = 39,000 and 42,000 ft (R l = 1.61 million/

ft and 1.40 million/ft, respectively). At the higher altitude, both the CF and the TS amplification

factors are reduced, but the effect is more pronounced on the TS amplification. In both cases,

transition is caused by TS instability, but it is postponed by 5% chord at the higher altitude.
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4.3 OVERALL SUCTION REQUIREMENTS

Figure 4.3-1 shows the calculated suction requirement over the whole span of the HLFC panel for

the design condition (M = 0.80, CL = 0.50, and h = 39,000 ft). The symbols show theWBL span

stations where calculations were made. The section Cq increases going outboard, but the suction flow

per unit span (proportional to c times Cq) diminishes, except at the inboard end. There, the early

pressure recovery limits the extent of laminar flow, so additional suction would have no effect. The

mean values Of Cq and CCq over the HLFC panel axe 4.9 x 10 -5 and 6.8 x 10 -4 ft, respectively. The

slight dip in Cq at WBL 387 amd 416 is not considered significant because of the "cut and try" nature

of the optimization procedure.

The stability calculations indicate laminar flow at least up to the pressure recovery line (the

approximate location of the shock), as shown in figure 4.3-2 by the dashed line. It runs approximately

along the 45% chord line outboard, then moves forward to about 24% chord at the inboard end.

However, prediction of the recovery line by the computer code is somewhat uncertain because the

computation tends to smooth out abrupt changes in pressure, such as at the shock. Therefore the

actual pressure recovery point may lie somewhat downstream of the computed one, and an additional

5% to 10% chord laminar flow may be possible. This region is marked by shading in the figure. The

potential laminar zone may therefore reach 50% to 55% chord over the outboard half of the test area,

decreasing gradually to about 30% to 40% chord at the inboard edge of the suction region (WBL 330).

For off-design conditions, the stability calculations were carried out for only three spanwise stations,

resulting in a sparse definition of the cq distribution. Nevertheless, the trends with Mach number,

CL, and altitude axe clearly identifiable. Figure 4.3-3 shows the effect of varying CL in the range from

0.40 to 0.55 on the required cq and predicted transition at M = 0.80 and h = 35,000 ft. More suction

is required at lower CLS but in spite of this, less laminar flow would be obtainable. This is true because

the pressure distributions are more conducive to laminar flow at higher lift coefficients, particularly

in the central and inboard regions of the test panel.

The effects of altitude at M = 0.80 and CL = 0.50 are illustrated in figure 4.3-4, for h = 35,000 and

42,000 ft. At the higher altitude, less suction is required and the extent of laminar flow is increased.

Because both cases have the same pressure distributions, the difference is due to the decreased

disturbance growth at the lower unit Reynolds number.
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4.4 ADJUSTMENTS TO THEORETICAL SUCTION DISTRIBUTIONS

The analyses described above were done before the final configuration of the suction surface and

flute arrangement were established. The calculations were carried out independently for individual

sections. Consequently, the cq distributions showed some spanwise variation, as noted above in the

discussion of figure 4.3-1. Therefore, the theoretical cq' distributions were adjusted to make them

mutually consistent and compatible with the hardware design. The adjustments affected both the

forward region, where the flutes are curved to follow the external isobars, and the suction termination

point. The aftmost flute was eliminated to provide space for the joint between the suction surface

and the front spar. The adjusted Cq' distributions are shown in figure 4.4-1. The peak values of Cq'
are 14 x 10 -4 for CL = 0.40, 13 x 10-4 for CL -- 0.50, and 12 x 10-4 for CL = 0.60, respectively (see

fig. 4.4-1 for connecting points A-B). The intermediate zone between the high- and low-suction

regions is defined by point C, where Cq' = 4.00 x 10-4, and point D, where s/c = 0.04. The low-suction

region, with Cq' -- 2 x 10-4, terminates at a fixed distance from the leading edge, and therefore at

increasing s/c with distance outboard (point E).

The adjusted spanwise distributions Of Cq and CCq for the design condition are shown in figure 4.4-2.

The irregularities have been eliminated and the Cq levels somewhat reduced. The average CCq is 6.54
x 10 -4 ft. The resulting total flow coefficient for the entire test area is

CQ = _(Ccq)dYsp / Spanel = 4-72x10-5 l-i- = _(CCq)dYsp = 4.72x10 -5
Ssp

The corresponding total volume flow rate is

Q = V**SpanelCQ-" 6.97 ft3/s

where

V** - 774.4 ft/s at M = 0.80 and h = 39,000 ft,

and the mass flow rate is

w = 13.. g Q = O. 1368 lb/s = 8.2 lb/min

These adjusted suction distributions were the basis for the internal flow system design. That activity

is described in volume IV of this report.
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5.0 ATTACHMENT-LINE FLOW TREATMENT

5.1 BACKGROUND AND DESIGN CRITERIA

The third form of boundary layer instability that may cause early transition on swept wings is called

"attachment-line turbulence contamination." It was first observed during early laminar flow flight

experiments in England (refs. 17 and 18) and was encountered also on the NorthropAJSAF X-21

research airplane (ref. 19). Premature transition may be caused by turbulence convected by the

boundary layer of the spanwise flow along the leading edge attachment line, that is, the surface

streamline separating the flows above and below the wing. Disturbances may originate from

turbulent eddies in the fuselage boundary layer, from vortices forming at the wing/fuselage

intersection, or they may arise within the attachment-line boundary layer itself. The behavior of the

attachment-line boundary layer depends on its momentum thickness Reynolds number

palWalOal
Roal = ttal

where the subscript"al" denotes"attachment line." The attachment-line boundary layer momentum

thickness, 0al, depends on the sweepback angle, the unit Reynolds number, and the velocity gradient

normal to the attachment line. That gradient is strongly influenced by leading edge geometry.

Appendices B and C include wing cross sections normal to the leading edge and leading edge radius
data.

According to references 19, 20, and 21, Real should be kept less than 94 to 100 to ensure that the

flow stays laminar.

5.2 ATTACHMENT-LINE FLOW CONDITIONS ON THE MODIFIED WING

Figure 5.2-1 shows Roal (as calculated by a subroutine included in the transonic flbw computer code

discussed in sec. 3.1, above) for several flight conditions in the cruise envelope. It can be seen that

in the test region, R0al often approaches and sometimes exceeds the critical value of 100, particularly

at cruise altitudes below 35,000 ft. Consequently, some kind of treatment against attachment line

wansidon was deemed necessary.

5.3 ATTACHMENT-LINE FLOW STABILIZATION BY PASSIVE SUCTION

Initially, the application of a "Gaster-bump" (a bump on the leading edge that creates a local

stagnation point and thus diverts the leading edge boundary layer (ref. 22)) was considered. It had

been proven effective by previous experiments, such as the laminar flow test fixture on the Avro

Lancaster (ref. 23) and the NASA Jetstar/LEFT suction glove (ref. 8). Other schemes that had been

used before with success, such as a notch in the leading edge, used on the NASA/Boeing 757 NLF

glove (ref. 6), or a laminarized fence on the leading edge, used on the X-21 (ref. 7), were also

considered but judged not practical for the present case.
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It was finally decided to apply suction at the leading edge inboard of the HLFC test panel, because

a Gaster bump could always be added later if it were needed, whereas reu'ofimng suction would be

much more difficult. Two arrangements were considered (fig. 5.3-I), one using chordwis¢ slots

across the leading edge and the other using perforated skin. The former scheme had been reed

previously on the X-21, but perforations were chosen here because large areas of skin were to be

perforated anyway, and forming problems were foreseen for the slotted skin. It was convenient to

make the attachment-line suction independent of the main suction system, using the relatively high
external pressure at the attachment line and vendng to a low pressure region on the wing lower

surface, as shown in figure 5.3-2.

In selecting the size and location of the attachment-line suction area, the movement of the attachment

line with changing flight conditions and the associated variations of external pressures were

considered. The position of the attachment line could be inferred from the calculated pressures

(sec. 3.3). Figure 5.3-3 shows the theoretical location of the attachment line along the

HLFC test span for the design condition and the two extreme off-design conditions. At the design
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WBL

Figure 5.3-3. Range of Movement of the Attachment Line at Cruise Conditions

condition, the attachment line lies 0.2 to 0.4 in below the leading edge (highlight). At lower CLS it

moves upward (closer to the highlight) and at higher CLs it moves downward. The total excursion

is about 0.6 in. The upper and lower boundaries of the suction area were placed I in above and 1.5 in

below the highlight. The span of the ac,achment-linc suction area was 6 in. At the estimated suction

rams, R0al in the most critical region could be reduced from the original level of I00 to about 30.
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6.0 LEADING EDGE DEVICE AERODYNAMIC DESIGN

As part of the I-ILFC flight experiment, a dual-purpose leading edge Krueger flap was incorporated

to serve both as a high-lift device and as an insect and debris shield. Before the contract effort was

begun, a Boeing-sponsored, two-dimensional wind tunnel test had been performed to investigate the

high-lift geometry trades and insect protection effectiveness ofa Krueger flap (ref. 24). The design

of the leading edge device used in the HLFC flight experiment was guided by the knowledge gained

from these preliminary experiments. Later, as part of the contract effort, a three-dimensional low-

speed test was conducted to evaluate the effects of the modified high-lift system on the low-speed

performance and handling characteristics of the test airplane.

6.1 DESIGN REQUIREMENTS AND APPROACH

The design requirements for the leading-edge device were--

a. The Krueger flap that replaces the Nos. 3 and 4 slats on the left wing must provide

comparable high-lift capabilities to the slats, and the resulting asymmetrical leading-

edge configuration must not cause unacceptable handling characteristics in low-speed

flight.

b. The Krueger flap and its actuating mechanism must be compact, in order to leave room

for the suction system ducting.

c. The Krueger flap in the deployed position must shield the suction surface leading edge

from contamination resulting from insect accretion and other forms of flying debris

during takeoff and landing.

d. The power to actuate the Krueger flap must be provided by the same torque tube that

drives the rest of the slats to ensure simultaneous operation.

Because of the difficult kinematics of matching deployment of the Krueger and the three-position

(retracted, gapped, or sealed) slat it was decided to modify the leading edge device control system

to eliminate the sealed-leading-edge (takeoff) slat position. Therefore, only a two-position Krueger

was required (retracted or deployed-with-gap).

6.2 PRELIMINARY STUDIES

Figure 6.2-1 shows the test setup and model configuration of the two-dimensional tests referred to

previously. The chord of the Krueger flap was 12% of the wing chord. The main geometry variables

were the flap deflection angle, the height of the flap trailing edge above the wing chord plane, and

the gap between the flap trailing edge and the wing. The best high-lift characteristics were obtained

at 45 deg deflection, with both gap and height at 2.2% chord.
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An apparatus was developed to inject insects into the wind runnel flow. Three types of insects (spring

tails, aphids, and frait flies) were used for siz¢ variations, which at full scale would represent larger
ins¢cts. Two critical conditions were investigated with the Krueger flap at the optimum high-lift

position: (1) heavy insects at low angle of attack, as would be encountered during takeoff roll, and

(2) light insects at high angle of attack, as encountered during climbout and approach. Results of this

experiment are shown in figure 6.2-2 for all three species at the critical angles. These results are

_,_ a= 8deg

regions

__ a = I0 deg

7"

Spring Talls Impact Summary

Impact regions

a= Odeg

11"

Aphids Impact Summary

Impact regions

Impacts occurred;
but no remnants

_. cx= 0deg

FruR Flies Impact Summary

"Number of impacts

Figure 6.2-2 Test Results on the Effectiveness of the Krueger Flap as Insect Shie_
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Versus Test Results at 0 and -4 deg Angle of Attack

consistent with predictions based on particle trajectories computed using, a two-dimensional
multielcmcnt airfoil code (ref. 25) with an empirical model for lift and drag of insects derived by

Bragg and Maresh (ref. 26) as shown in figure 6.2-3.

6.3 DESIGN INTEGRATION

A variable-camber Kruegcr flap similar to the one used on the Boeing 747 would have been n_ded
to match the optimum geometry determined in the two-dimensional test discussed above, but it also
would have added cost and complexity without contributing to the principal objectives of the

program. It was found that the design goals could be met by changing the shape of the wing lower
surface and incorporating a folding"bull-nose leading edge as described in section 3.3. Figure 6.3-1
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compares the desired aerodynamic contours and the final design. Some compromises were allowed
in the hardware design to meet volume and kinematic consu'aints. For example, four small notches
were cut in the buU-nose to provide clearance from the supporting ribs with the Krueger flap stowed.
These arc described in more derail in volume III of this report.

6.4 LOW-SPEED WIND TUNNEL TEST

A three-dimensional low-speed wind tunnel test was performed on a 0.055 scale model of the 757

in the 8- by 12-ft wind tunnel of the University of Washington Aeronautical Laboratory (UWAL),

with the HI..FC Krueger and modified leading edge installed. The purpose was to identify
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Figure 6.3-1. Comparison of the Requested and Produced Krueger Geometries
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incremental low-speed performance and stability and control changes attributable to the HLFC

modifications. The model was tested both in free air and in ground effect, as shown in figure 6.4-1.

Testing was conducted at a dynamic pressure of 60 lb/ft 2, which corresponds to a Reynolds number

of 1.3 million, based on mean aerodynamic chord.

The test included several trailing edge flap positions used during takeoff and landing. In addition to

the basic Krueger configuration, notches in the leading-edge bull-nose (fig. 6.4-2) were also

evaluated. A feature that caused some concern was the discontinuity between the Krueger and the

slat at the outboard end of the I-ILFC test span, as shown in figure 6.4-3. This discontinuity was

unavoidable because of the geometric differences between the two systems. Flow visualization

photographs revealed that there was a large area of separated flow downstream of the leading edge

discontinuity at high angles of attack. A large rolling moment resulted from the unsymmetrical stall,

as shown in figure 6.4-4. A Krueger end-seal was installed between the Krueger and the slat (see

fig. 6.4-2) was found to reduce the maximum unsymmetrical moment by more than 50% up to 24 deg

angle of attack. Figure 6.4-5 shows the observed flow patterns for the baseline wing and for the

modified wing with and without the Krueger end-seal at 18 deg angle of attack (just beyond stall).

The test showed that the lift capability of the modified wing was only slightly impaired, resulting in

a CLmax decrement of 0.05, corresponding to about a 1.3-kn increase in stall speed. The Krueger

end-seal at the end of the Krueger made the stall less abrupt, but did not increase CLmax. Figure 6.4-6

shows the lift curves with the Krueger flaps installed, with and without the Krueger end-seal, in

comparison to the baseline configuration with the slats in both the takeoff and the landing positions.

The drag of the modified configuration did not change much relative to the baseline when the slats
were in the landing position. In the takeoff position, the slats showed somewhat lower drag. Thus,

the Krueger, in landing configuration required to prevent insect accretion, would have a drag penalty

during initial climb. The measured drag characteristics are shown in figure 6.4-7 for the case of

20 deg trailing edge flap deflection.

The pitching moment data did not indicate changes in the longitudinal characteristics great enough

to require different handling or trimming of the airplane. Furthermore, the notches in the Krueger

leading edge had no significant effects on airplane performance and stability characteristics.

However, the rolling moment due to unsymmetrical stall was still a matter of great concern. While

the problem could have been significantly alleviated by the Krueger end-seal, it was decided not to

use it because of the complexity and cost. Instead, safety was ensured by prohibiting intentional stalls

and by adjusting the stall warning stick shaker.
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Figure 6.4-1. Low-Speed Wind Tunnel Model of the Boeing 757 With HLFC Modifications
Installed in the UWAL Wind Tunnel
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Figure 6.4-3. Mismatch of Krueger and Slat Contours at the Outboard Edge of the HLFC Test Area
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7.1 LESSONS LEARNED

7.0 CONCLUDING REMARKS

The rem arks below summarize salient points and lessons learned from the de sign study reported here,

which provided the geometry and suction requirements for a 20-ft long hybrid laminar flow control

test panel for a Boeing 757 wing.

ao

b.

c°

d.

e°

f.

The design was based entirely on analysis, except for a wind tunnel test to validate the flaps-

down characteristics of the modified airplane. Design of the HLFC leading edge contours was

accomplished using a three-dimensional, transonic viscous-flow computer code system. The

estimates of suction requirements and achievable extent of laminar flow were made on the basis

of boundary layer stability analysis using the USS computer code and an empirically
determined transition criterion.

g.

The requirements of HLFC added a dimension to the wing aerodynamic design problem,

because restricting suction to the area forward of the front spar puts new constraints on tailoring

the profile for compressibility drag and lift coefficient.

The original contours of the outboard wing provided pressure distributions that would be

acceptable for HLFC. However, a slight modification of the leading edge geometry ahead of

the front spar further enhanced the flow characteristics, resulting in reduced crossflow

instability and therefore a reduced suction requirement. Repeated smoothing of the computer-

generated contours was necessary in both chordwise and spanwise directions to arrive at a

surface definition that met the stringent waviness criteria for laminar flow.

Desirable pressure distributions for/-tLFC in the vicinity of the engine nacelle could not be

provided within the design constraints. Nacelle interference effects caused an extended

pressure gradient there, which increased crossflow instability.

Investigation of off-design flight conditions showed the most favorable pressure distributions

for extensive laminar flow in cruise occur at somewhat higher values of both Mach number and

lift coefficient than the design point (Mach 0.80 at CL = 0.50). In both climb and descent a

pronounced pressure peak near the leading edge would likely preclude achievement of
extensive laminar flow.

Accurate pressure predictions are very important to the design of a laminar-flow wing because

boundary layer stability, and hence suction requirements, critically depend on them. Flight test

results obtained later in the program (to be reported in volume I) revealed certain characteristic

differences from the CFD predictions, such as shock locations farther aft and more pronounced

pressure peaks.

The transition prediction method used in this study was based on an empirical criterion derived

from data showing significant scatter. Computed transition locations and suction requirements

are therefore uncertain. After the analytical work described in this report had been completed,

a revised transition criterion was proposed with the inclusion of the latest data obtained with

the F-14 VSTFE airplane. The revised criterion indicated less sensitivity to crossflow

amplification than the one used in the present study, and it would have reduced the predicted

suction requirement.
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h° The best suction distributions obtained in the study had a high-suction region extending from

the leading cdge to the end of the steep initial pressure gradient, followed by a longer low-

suction zone. A gradual transition between the high- and low-suction regions was found to be

advantageous. The required suction flow coefficient (CQ) at the design condition is

4.72 xl0 -5, requiring a mass flow rate for the HLFC test panel of 8.2 lb/min.

The stability analyses indicated that laminar flow could be sustained at least back to the pressure
recovery line (or shock location), at about 45% chord over the outboard half of the HLFC test

panel. Inboard, because of nacelle interference effects, the pressure recovery and transition

front would be farther forward, at about 35% chord.

jo The HLFC test panel leading edge was calculated to be marginal with respect to attachment-

line turbulence contamination. A leading edge suction patch was therefore provided just

inboard of the panel, vented to a low-pressure point on the lower surface to provide suction

independently of the main suction system.

k° A low-speed wind runneltestof a 757 model with themodified leadingedge devicesshowed

thatthemaximum liftcapabilitywould be slightlycompromised by replacingtwo slatsby the

dual-purposeKrueger flap,but thatthemodificationwould not significantlyalterthc low-

speed performance of the testairplane.

7.2 RECOMMENDATIONS

Furtherstudiesare recommended in the followingareas:

a. Pressure Prediction Methods. CFD codes should be correlated with flight test pressure

surveyresults,as wellas with wind tunneldata,and means should be sought toimprove the

accuracy of shock location and pressure peak prediction.

b° Wing/Nacelle Integration. Nacelle, strut, and wing contours that minimize spanwise pressure

gradients and provide straight isobars are needed in order to maximize the extent of laminar

flow and simplify HLFC suction system design.

C* Transition Prediction Methods. Further analysis and correlation efforts are needed to reduce

the uncertainty of the predicted transition point.

d. Leading Edge High-LiflJInsect Protection Devices. The drag penalty resulting from the gap

between the Krueger flap and the fixed leading edge at the takeoff flap setting should be reduced
or eliminated.
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Appendix A

Geometry Comparisons Between the HLFC and the 757 Wings

This appendix presents comparisons of airfoil contours between the basic Boeing 757 wing and the

modified HLFC test section at 10 spanwise stations from WBL 270 to WBL 513.

The x coordinates are body station values, and the z coordinates are measured vertically from the wing

definition plane. The units are inches for both.

The dashed lines are the original 757 prof'rles, while the solid lines show the HLFC contours.
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Appendix B

Normal Cuts of HLFC Airfoil Sections

The nose radius of a profile taken in a plane normal to the wing leading edge is the dominant parameter

determining the velocity gradient normal to the attachment line, which is required for evaluation of the

attachment line boundary layer momentum thickness.

This appendix shows normal cuts of the HLFC leading edge at three locations on the HLFC test panel.

They are at outboard slat stations (OSS) 322, 441, and 562, as indicated in figure B-1.
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Appendix C

Leading Edge Radius

This appendix presents a comparison between the leading edge radii of the basic 757 wing and the

modified HLFC wing over the span of the test panel.
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Appendix D

Pressure Distributions at the Design Condition

This appendix shows calculated pressure coefficient distributions at the design condition (Mach 0.80 at CL

= 0.50) at 10 spanwise stations on the HLFC test panel, from WBL 270 to WBL 513. Each figure shows

CPs for the entire section plus an expanded-scale plot covering the forward 28% of the chord.
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Appendix E

Isobar Plots for the HLFC Test Panel

This appendix presents computer-generated isobar plots for the HLFC test panel at the design condition,

Mach 0.80 at C L = 0.50.

Figures E-1 and E-2 show upper and lower surface isobars on the fight wing planform on the airplane,

although the left wing was actually modified. Figure E-3 shows isobars projected on the developed wing

upper surface near the leading edge. Figure E-4 shows the same data in enlarged format, this time plotted

for the left wing, over a narrow portion near the attachment line.

111



0

o)

"O

o g

w m

w'_ m

j= II

m u k.

m s,.
__o- i

0

cO

u')

u!'V.LS8

Q.
0

8 o

/

o
_D

co

0

Lo

o

I

II

0
o

0 0 °J

c_
II

q)

q)
_J

o
co

o

o
oJ

112



0

O)

/
/

0 0 0

o_
8

u_'V.LSB

I
0

0
t4_

0
O,,,f

0

C,
_r
'_r

II

I!

0

m-
.,,J ¢_

¢3

to

o

C,

o
0

0
C_

113



0

°

,.._-_'_<_/ "
0. d

0

d

00

9
I,il

8

0

0

ICl

IIi

t

i_(I)

m 0

q)

li)

0

i
Z

I
0 0 L'3 0

u! ,(o$) e6pe 6u!pltel ol leUilOU eoelins 5uote eoutls._ 0

ft
_0

114



G)

:E

/

_. _ /

u! '(°s) eSpe Bu!pee I o_ leUUOU eoejJns 5UOle eouels!(3

o
o

!
z

C)

q)

0

u)

(b

Q)

03
C_

LU

115



This page intentionally left blank

116



Appendix F

Boundary Layer Growth on the HLFC Test Surface

This appendix presents the calculated growth of the laminar boundary layer at three sections within the

HLFC test panel: WBL 290, WBL 387, and WBL 479. These data pertain to the nominal design
condition, M = 0.80, CL = 0.50 at 39,000-ft altitude. Figure F-1 shows the boundary layer velocity

thickness, 8, that is, the distance from the surface to the point where the velocity is 99% of the potential-

flow value. Figure F-2 shows the displacement thickness, 8*. Both are plotted against arc length on the

airfoil surface divided by local wing chord.
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Appendix G

Detailed Results of Boundary Layer Stability Calculations

This appendix contains computer-generated plots summarizing the stability calculations at six spanwise
stations, WBL 270, 311,360, 416, 447, and 513, at the nominal design condition of Mach 0.80, at CL =

0.50 and 39000-ft altitude.

For each station, the following are plotted against s/c:

a. Static pressure over the first 20% of the wing upper surface arc length, s/c, and the suction

distribution applied.

b. Crossflow disturbance amplification factors, NCF, for a range of wave numbers, _F, at zero

frequency.

c. ToUmien-Schlichting disturbance amplification factors, NTS, for a range of frequencies, (O,'TS), at

50-deg wave angle.

In addition, there are--

d. Contour plots of CF amplification factors, NCF = f(_F, s/c).

e. Contour plots of TS amplification factors, NTS = f(t-oTS, s/c).

f. Comparison of CF and TS amplification factors with the transition criterion.
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